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Background

- T-cell exhaustion and lack of durable stemness (defined as the ability of cells to proliferate, persist, and self-renew) are Figure 1: LYL119, an investigational ROR1-targeted CAR T-cell
key barriers to effective T-cell therapy in solid tumors'-2 product enhanced with Lyell’s reprogramming technologies
 Lyell has developed multiple genetic and epigenetic T-cell reprogramming strategies to overcome these barriers: Optimized variant ROR1-specific chimeric
. . . . .. of epidermal antigen receptor (CAR)
a Genetically reprogramming T cells through c-Jun overexpression delays exhaustion and results in increased growth factor : |
proliferation, sustained cytokine production, and durable antitumor activity!3— receptor (EGFRopt) ‘ - Anti-RORH
@) Genetically reprogramming T cells through NR4A3 gene KO in combination with c-Jun overexpression further vratio fagment
enhances resistance to exhaustion and improves antitumor activity® (scFv)
e Epigenetic reprogramming with Lyell’s Epi-R™ manufacturing protocol preserves stem-like qualities by controlling T-  4BB
cell proliferation and differentiation with optimized proprietary cell culture media and other manufacturing steps™6-8
9 Epigenetic reprogramming with Lyell’s Stim-R™ technology (a synthetic biomimetic designed to precisely and — CD3¢

physiologically present T-cell activation signals during manufacturing) further improves T-cell polyfunctionality,
persistence, and antitumor activity®

« These four T-cell reprogramming technologies are combined in LYL119, an investigational ROR1-targeted CAR T-cell
product enhanced with c-Jun overexpression, NR4A3 KO, and Epi-R and Stim-R technologies to overcome barriers to 0
successful T-cell therapy in solid tumors (Figure 1)
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High NR4A3 genomic editing results in significantly reduced NR4A3 Figure 5: LYL119 exhibits reduced T-cell exhaustion and enhanced memory-like and
- - effector-like transcriptomic signatures after antigen restimulation
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restimulation with A549 tumor cells. (A) Representative UMAP plot derived from one clinical-scale donor (n=2) showing terminally
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RNA expression. LYL119 shows enriched GNLY and CD127 RNA expressions. (B) Percentage of terminally exhausted cluster shown

NR4A3 genomic editing efficiency (A) and NR4A3 protein expression (B) in edited ROR1 CAR T cells. Symbols correspond to ROR1 in A. Symbols correspond to CAR T cells derived from independent donors. (C) Exhaustion-associated gene set enrichment analysis.

CAR T cells derived from independent donors (n=3 for research and n=2 for clinical scale). Asterisks indicate significant differences.
*p<0.05; ***p<0.001 by Tukey’s ordinary one-way ANOVA statistical analysis (research) or an unpaired t-test (clinical).

LYL119 has potent antitumor activity in vivo
LYL119 demonstrates superior in vitro activity compared to ROR1 CAR T  Compared to non-edited ROR1 CAR T cells with c-Jun overexpression alone, LYL119:

cells |acking one or more reprogramming technologies - Demonstrated robust antitumor activity across a 10-fold CAR T-cell dose range
» Exhibited superior CAR T-cell expansion in the peripheral blood ranging 13- to 62-fold higher on

Day 21 after T-cell injection
« Significantly improved animal survival at the low 0.1 x 106 CAR T-cell dose (Figure 6)

Research and clinical-scale LYL119 demonstrated prolonged cytotoxicity and enhanced IFN-y secretion
upon antigen restimulation with multiple different ROR1-expressing solid tumor cell lines (Figure 3)
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T cells lacking 1 or 2 reprogramming technologies (Figure 7)
(A) Normalized target killing following sequential stimulation with ROR1* solid tumor cell lines. Lysis of NucLight Red (NLR)-
expressing tumor cells was quantified by measuring total NLR intensity and normalized relative to the starting intensity for each round
of stimulation. (B) IFN-y secretion during sequential exposure to antigen described in (A). Error bars represent mean + SD of triplicate
wells. One representative donor is shown at research (n=3) and clinical (n=2) scale. Asterisks indicate significant differences

Figure 7: NSCLC patient-derived LYL119 demonstrates superior cytotoxicity in vitro
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+ Healthy donor ROR1 CAR T cells were manufactured at research or clinical scale using the Epi-R protocol, activated with Stim-R technology or a standard reagent, and transduced with a lentiviral vector encoding c-Jun, the ROR1 CAR, and an
optimized variant of EGFR (EGFRopt). NSCLC patient donor ROR1 CAR T cells were manufactured at research scale.

» T cells were electroporated with a single guide RNA targeting human NR4A3 or control CD19 (not expressed in T cells) complexed with SpyFi™ Cas9 nuclease (Aldevron®)

* ROR1 CAR T-cell cytotoxicity, cytokine production, and phenotype were evaluated in vitro following antigen restimulation assays designed to promote T-cell exhaustion

* Antitumor activity of ROR1 CAR T cells was evaluated in vivo using a ROR1-expressing H1975 human NSCLC xenograft model in NSG HLA dKO mice
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